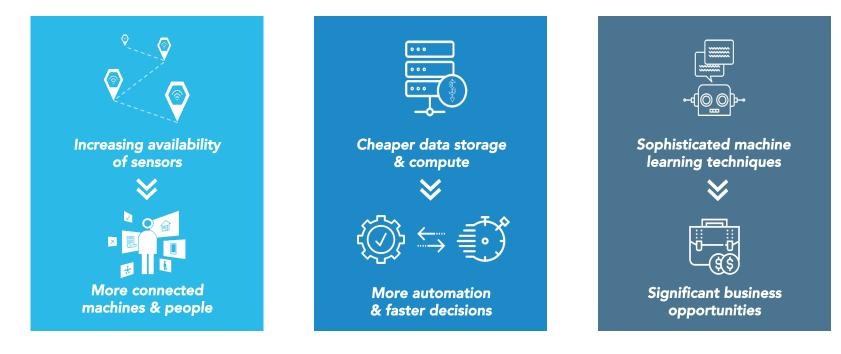
ARUNDO

End-to-End Pump System Analytics

June 2018

Agenda

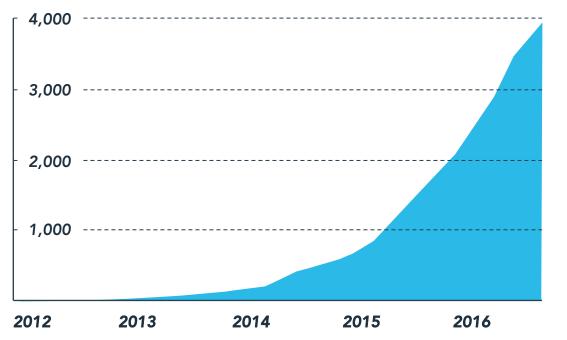
The Business Value: Why should you care?


The Technical Journey: from streaming data to advanced analytics

The Operational Journey: pump condition & performance monitoring

Key Lessons and Q&A

Technology megatrends are reshaping the world


New products / New processes / New business models

ARUNDO

IoT and machine learning are rapidly growing in many verticals ...

Growing use of deep learning at Google

of directories containing model description files


Across many products / areas

- Android
- Apps
- Drug discovery
- Gmail
- Image understanding
- Maps
- Natural language
- Understanding
- Photos
- Robotics research
- Speech
- Translation
- YouTube

... however, the pump industry faces unique challenges to adoption

Legacy physical assets weren't built for IIoT

Complexity in existing IT infrastructure

Perception: large IT "plumbing" investments needed to capture value

Over the last 20 years, digital adopters have strongly outperformed their peers

Total shareholder return 2000-2017 (Indexed to 100)

Source: Datastream; Boston Consulting Group

Note: All indexed were weighted by the market capitalization of their constituent stocks. Global challengers' performance is based on data from 92 publicly listed global-challengers companies. Global peers are 230 multinational companies that operate in the same industries as the global challengers. TSR is based on US dollars.

Agenda

The Business Value: Why should you care?

The Technical Journey: from streaming data to advanced analytics

The Operational Journey: pump condition & performance monitoring

Key Lessons and Q&A

Current state

- Periodic data collection
- Pre-set high/low thresholds for key physical measurements

Current state

- Periodic data collection
- Pre-set high/low thresholds for key physical measurements

Current challenges

- Thresholds not specific to installation/ application
- Reactive process
- Inefficient relative to value created

Journey

Current state

- Periodic data collection
- Pre-set high/low thresholds for key physical measurements

Current challenges

- Thresholds not specific to installation/ application
- Reactive process
- Inefficient relative to value created

Future state

- Real time streaming data
- Data-driven decision making

Journey

Current state

- Periodic data collection
- Pre-set high/low thresholds for key physical measurements

Current challenges

- Thresholds not specific to installation/ application
- Reactive process
- Inefficient relative to value created

Future state

- Real time streaming data
- Data-driven decision making

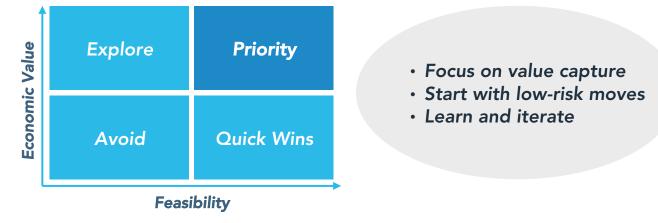
Future opportunities

- Insights tailored for local installation/system
- Proactive process
- Optimized for value capture

Getting from "current" to "future" involves diverse capabilities and understandin

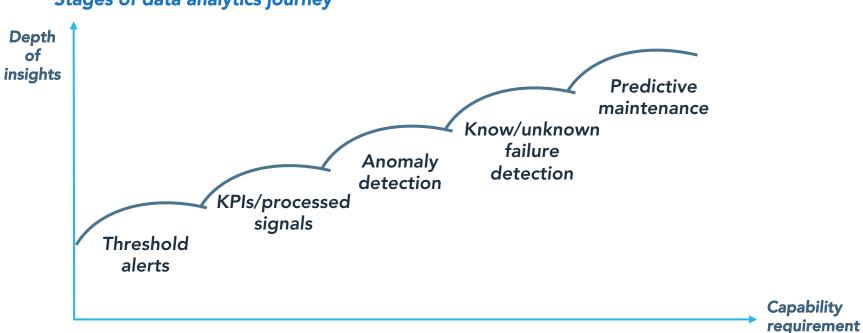
How should we start to collect streaming data values?

Which values should I collect? How many sensors per asset? How often do I sample?

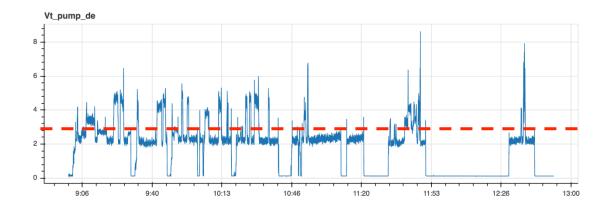


How should we start to collect streaming data values?

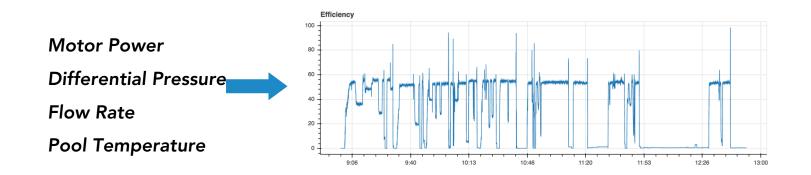
Which values should I collect? How many sensors per asset? How often do I sample?


ARUNDO

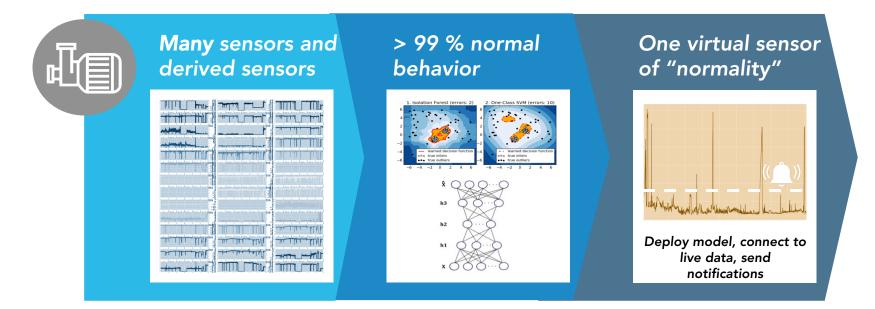
Once data is streaming, a new set of challenges come up


How to play with the streaming data?

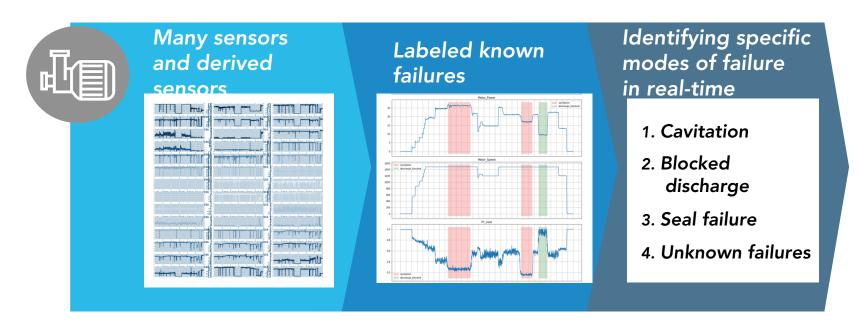
Stages of data analytics journey


Initial practice usually involves comparisons with threshold for key values such as temperature and vibration

Comparing sensor readings to recommended thresholds a.Based on test data b.Based on 3rd party calibration/benchmark c.Calibrated with own data


Second opportunity incorporates first principles KPIs

Manipulating/transforming raw sensor data based on engineering insights (e.g., how fast is a value changing, even if it hasn't breached threshold)


Third opportunity uses machine learning to recognize "abnormal" behavior

Data-driven model that understands "normal" behavior for a specific pump in a specific location/application (anomaly detection)

ARUNDO

Fourth opportunity uses machine learning for failure mode identification

Series of models examining specific modes of failure for the pump (enables easier root cause analysis)

Fifth opportunity uses machine learning for predictive maintenance

Current status

The performance of pump degrades over time due to wear, corrosion and erosion To counteract this:

- Regular inspections
- Replacement of worn out parts
- Reactive maintenance

Desired outcome

Forecast degradation to assist with scheduling of cleaning together with other maintenance activities

But none of this matters if the business doesn't change

1 IT/OT Solution

- Sensors
- Streaming data
- Connectivity
- Storage

2 Data Journey

- Threshold alerts
- KPIs/role of change analytics
- Anomaly detection
- Known/unknown failure detection

³ Operational Journey

- Data products for people
- Integrated into business process

Agenda

The Business Value: Why should you care?

The Technical Journey: from streaming data to advanced analytics

The Operational Journey: pump condition & performance monitoring

Key Lessons and Q&A

Discussion of the Operational Journey

Agenda

The Business Value: Why should you care?

The Technical Journey: from streaming data to advanced analytics

The Operational Journey: pump condition & performance monitoring

Key Lessons and Q&A

Consider solution architecture, data analytics, and operational implications together

Find low-risk ways to get started – don't wait for the perfect sensor or instrument

Focus on **business value** – what will you change to reduce costs or increase revenue?

Create data products for people, not models for data

Contact us at lukasz.mentel@arundo.com, or xinwo.huang@arundo.com

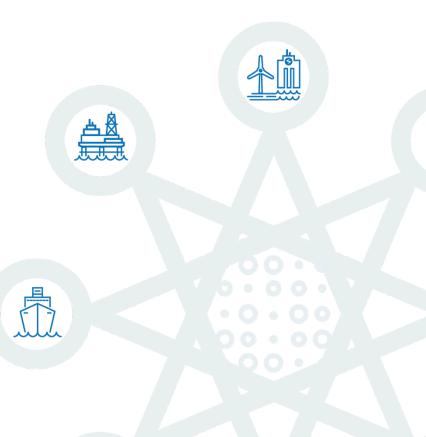
SURVEY 1

Where is your company in its "Digital Journey"?

A)We are not thinking about it / not applicable
B)We are starting to think about it
C)We have launched pilot projects
D)We have integrated projects into our core business

SURVEY 2

How are you using field equipment data?


A)We are not doing it / not applicable
B)We are comparing to benchmark thresholds
C)We are feeding physics-based models
D)We are feeding machine learning models

ARUNDO

provides software products to **enable** enterprise-scale machine learning and advanced analytics applications for **industrial companies**

www.arundo.com

ARUNDO

Copyright © 2018 Arundo Analytics, Inc. All rights reserved

ARUNDO HOUSTON | OSLO | PALO ALTO