

## Efficient Pump Selection \& Control

www.grundfos.us/training

## Grundfos Technical Institute www.grundfos.us/training

- Virtual Classroom
- Self-Paced
- Over 50 courses
- Certificates of Completion
- Webinars
- Live and Recorded
- Face-to-Face Training




## Shut-Off Head

No flow performance, don't run here for more than a few minutes (Damage from heat buildup can occur)

## Operating Point

This is where the pump is actually running, where the system curve intersects the performance curve

## Duty Point

The design flow and head, this is what is required, usually based on calculations

## Run Out/End of Curve

This is the maximum allowable flow rate for the pump. Flows exceeding this should be avoided (Damage can occur)

## Pump Efficiency

This is the pump hydraulic efficiency, does not typically include motor efficiency

## Brake Horsepower

This is the horsepower required by the pump. Any point on this curve should be lower than the motor nameplate horsepower

## NPSH

Net Positive Suction Head, the actual suction head of the system must be higher than this value. Very important in boiler feed systems and systems with flooded suction. Not so important for cold water from a pressurized source or hydronic heating/cool systems

## Points on a Pump Performance Curve



## Two common variable flow pump applications

HVAC Circulation - Hot and/or Chilled Water
Water Supply - Pressure Boosting

## HVAC Circulation

Differential Pressure measured remotely


## HVAC Circulation

## Differential Pressure measured across pumps



## Pressure Boosting



Pump Head/Capacity Curve



## Pump Head/Capacity Curve



Pump Head/Capacity Curve


## The Affinity Laws

## for centrifugal pumps

Flow varies linearly with pump speed

Head varies with the square of the pump speed

Brake Horsepower varies with the cube of the pump speed

$$
>\quad \frac{\mathrm{GPM}_{1}}{\mathrm{GPM}_{2}}=\frac{\mathrm{RPM}_{1}}{\mathrm{RPM}_{2}} \quad>\quad \mathrm{GPM}_{2}=\mathrm{GPM}_{1}\left(\frac{\mathrm{RPM}_{2}}{\mathrm{RPM}_{1}}\right)
$$

$$
>\frac{\mathrm{TDH}_{1}}{\mathrm{TDH}_{2}}=\left(\frac{\mathrm{RPM}_{1}}{\mathrm{RPM}_{2}}\right)^{2}>
$$

$$
\frac{\mathrm{BHP}_{1}}{\mathrm{BHP}_{2}}=\left(\frac{\mathrm{RPM}_{1}}{\mathrm{RPM}_{2}}\right)^{3} \quad>\quad \mathrm{BHP}_{2}=\mathrm{BHP}_{1}\left(\frac{\mathrm{RPM}_{2}}{\mathrm{RPM}_{1}}\right)^{3}
$$

When TDH ${ }_{1}$, RPM $_{1}$ and TDH ${ }_{2}$ are known:

$$
\begin{aligned}
& \mathrm{RPM}_{2}=\mathrm{RPM}_{1} \sqrt{\frac{\mathrm{TDH}_{2}}{\mathrm{TDH}_{1}}} \\
& \text { What about efficiency? }
\end{aligned}
$$

$$
1 \text { = Original condition (full speed) }
$$

$$
2=\text { New condition (reduced speed) }
$$

## Curves of constant efficiency with speed reductions

Remember.....the affinity laws assume constant pump efficiency.

The pump can only run continuously at its Best Efficiency Point along a system or control curve that follows a curve of constant efficiency


## Curves of constant efficiency with speed reductions

Constant Pressure:
As flow reduces so does pump efficiency!


## Curves of constant efficiency with speed reductions

Similarly with HVAC Circulation

Efficiency also reduces with reducing flow


## Curves of constant efficiency with speed reductions

 When selecting pumps for variable flowSelect pumps based on a design flow that is to the RIGHT of the pumps best efficiency point.


## Pump Selection Example

Design Flow: 1000 gpm<br>Design Head: 75 feet

## Pump Selection Example

Design Flow: 1000 gpm Design Head: 75 feet

Selection Tool Results:

| Pump | Pump <br> Speed <br> [rpm] | Pump <br> Efficiency <br> [\%] | NPSHr | Max. <br> Power <br> [bhp] | \% Max. <br> Diameter | Size <br> [Suc/Dis] |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Option 1 | 1750 | 83.16 | 9.25 | 26.7 | 97.60 | $6 \times 5$ |
| Option 2 | 1750 | 82.94 | 8.39 | 25.5 | 81.24 | $6 \times 5$ |
| Option 3 | 1750 | 80.03 | 12.7 | 24.7 | 81.24 | $5 \times 4$ |
| Option 4 | 1750 | 78.09 | 27.2 | 24.2 | 92.69 | $5 \times 4$ |
| Option 5 | 1750 | 83.71 | 10.1 | 24.8 | 89.80 | $6 \times 5$ |

## Pump Selection Example

Design Flow: 1000 gpm Design Head: 75 feet

Selection Tool Results:

| Pump | Pump <br> Speed <br> [rpm] | Pump <br> Efficiency <br> [\%] | NPSHr | Max. <br> Power <br> [bhp] | \% Max. <br> Diameter | Size <br> [Suc/Dis] |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Option 1 | 1750 | 83.16 | 9.25 | 26.7 | 97.60 | $6 \times 5$ |
| Option 2 | 1750 | 82.94 | 8.39 | 25.5 | 81.24 | $6 \times 5$ |
| Option 3 | 1750 | 80.03 | 12.7 | 24.7 | 81.24 | $5 \times 4$ |
| Option 4 | 1750 | 78.09 | 27.2 | 24.2 | 92.69 | $5 \times 4$ |
| Option 5 | 1750 | 83.71 | 10.1 | 24.8 | 89.80 | $6 \times 5$ |

Option 5 = Highest efficiency, but is it the best choice for variable flow?

You must look at the pump curves as well as the control curve!





## Enter Flow Profile - 5 Duty Points

| Flow <br> $(G P M)$ | Required <br> TDH, feet | Hours <br> per Day | Hours <br> per $Y r$ |  |  |  |  |
| :---: | :---: | :---: | ---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 0 0 . 0}$ | $\mathbf{5 7}$ | $\mathbf{5 . 0}$ | 1,250 |  |  |  |  |
| $\mathbf{5 0 0 . 0}$ | 60 | 4.0 | 1,000 |  |  |  |  |
| $\mathbf{6 0 0 . 0}$ | 62 | $\mathbf{3 . 0}$ | 750 |  |  |  |  |
| $\mathbf{7 0 0 . 0}$ | 65 | $\mathbf{2 . 0}$ | 500 |  |  |  |  |
| $\mathbf{9 0 0 . 0}$ | $\mathbf{7 1}$ | $\mathbf{1 . 0}$ | 250 |  |  |  |  |
|  |  |  |  |  |  | 15 | 3,750 |
|  |  |  |  |  |  |  |  |

## Enter Flow Profile - 5 Duty Points

| Flow <br> $(\mathrm{GPM})$ | Required <br> TDH, feet | Hours <br> per Day | Hours <br> per $\gamma r$ |  |  |  |  |
| :---: | :---: | :---: | ---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 0 0 . 0}$ | $\mathbf{5 7}$ | $\mathbf{5 . 0}$ | 1,250 |  |  |  |  |
| $\mathbf{5 0 0 . 0}$ | $\mathbf{6 0}$ | $\mathbf{4 . 0}$ | 1,000 |  |  |  |  |
| $\mathbf{6 0 0 . 0}$ | 62 | $\mathbf{3 . 0}$ | 750 |  |  |  |  |
| $\mathbf{7 0 0 . 0}$ | 65 | $\mathbf{2 . 0}$ | 500 |  |  |  |  |
| $\mathbf{9 0 0 . 0}$ | $\mathbf{7 1}$ | $\mathbf{1 . 0}$ | 250 |  |  |  |  |
|  |  |  |  |  |  | 15 | 3,750 |
|  |  |  |  |  |  |  |  |

Brake Horsepower

| Flow | Option 1 | Option 2 | Option 3 | Option 4 | Option 5 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 300 | 7.3 | 9.5 | 6.9 | 5.7 | 6.9 |
| 500 | 10.1 | 12.1 | 9.8 | 9.2 | 9.7 |
| 600 | 11.8 | 13.6 | 11.7 | 11.3 | 11.4 |
| 700 | 13.9 | 15.5 | 14.1 | 13.7 | 13.5 |
| 900 | 19.4 | 19.9 | 19.9 | 20.2 | 19.1 |

Energy [kWh]

| Flow | Option 1 | Option 2 | Option 3 | Option 4 | Option 5 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 300 | 7994.2 | 9978.5 | 7288.8 | 6322.3 | 7310.3 |
| 500 | 8473.2 | 10164.2 | 8357.4 | 7802.3 | 8212.9 |
| 600 | 7472.7 | 8611.7 | 7480.1 | 7183.3 | 7267.5 |
| 700 | 5860.5 | 6464.0 | 5929.2 | 5793.9 | 5715.7 |
| 900 | 4046.4 | 4165.6 | 4210.4 | 4274.1 | 4031.9 |
|  | 33847.1 | 39384.0 | 33265.9 | $\mathbf{3 1 3 7 5 . 8}$ | 32538.4 |


| Pump | Pump <br> Speed <br> [rpm] | Pump <br> Efficiency <br> [\%] | NPSHr | Max. <br> Power <br> [bhp] | \% Max. <br> Diameter | Size <br> [Suc/Dis] |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Option 1 | 1750 | 83.16 | 9.25 | 26.7 | 97.60 | $6 \times 5$ |
| Option 2 | 1750 | 82.94 | 8.39 | 25.5 | 81.24 | $6 \times 5$ |
| Option 3 | 1750 | 80.03 | 12.7 | 24.7 | 81.24 | $5 \times 4$ |
| Option 4 | 1750 | 78.09 | 27.2 | 24.2 | 92.69 | $5 \times 4$ |
| Option 5 | 1750 | 83.71 | 10.1 | 24.8 | 89.80 | $6 \times 5$ |

Option 4 has the lowest energy consumption, yet the lowest efficiency at the design flow. How many hours do you really run at design flow, if ever.....

# Multiple Pump Operation - Parallel 

## Example:

Basic Requirements
Design Flow: 350 gpm
Design TDH: 90 feet

## Question:

Do we just select a 350 gpm pump with a head capacity of 90 feet and be done with it?

## Load Profile




## Two 50\% pumps:

Design Flow: 350 gpm
Design TDH: 90 feet
Pumps: $2 \times 7.5 \mathrm{HP}$
BHP at Design: 11.9


## One 100\% Pump:

Design Flow: 350 gpm
Design TDH: 90 feet
Pumps: $1 \times 15 \mathrm{HP}$
BHP at Design: 10.5

## Energy Consumption

## 1 x 15 HP Pump

Load Profile

|  | 1 | 2 | 3 | 4 |  |  |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- |
| Flow | 100 | 75 | 50 | 29 | $\%$ |  |
| Head | 100 | 87 | 78 | 72 | $\%$ |  |
| P1 | 9.57 | 6.28 | 4.36 | 3.26 | kW |  |
| Time | 267 | 667 | 1466 | 3600 | $\mathrm{~h} /$ Year |  |
| Energy consumption | 2556 | 4190 | 6386 | 11725 | $\mathrm{kWh} /$ Year | Total $=24,856 \mathrm{kWh} /$ Year |

## $2 \times 7.5$ HP Pumps

Load Profile

|  | 1 | 2 | 3 | 4 |  |  |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- |
| Flow | 100 | 75 | 50 | 29 | $\%$ |  |
| Head | 100 | 87 | 78 | 72 | $\%$ |  |
| P1 | 10.7 | 6.54 | 4.08 | 2.13 | kW |  |
| Time | 267 | 667 | 1466 | 3600 | $\mathrm{~h} /$ Year |  |
| Energy consumption | 2868 | 4365 | 5982 | 7661 | $\mathrm{kWh} /$ Year | Total $=20,877 \mathrm{kWh} /$ Year |
| Quantity | 2 | 2 | 2 | 1 |  |  |

At 75-100\% flow the single pump has a lower kW requirement (higher pump/motor efficiency). But pumps generally have higher running hours at lower flow rates therefore the two pump solution is a better choice overall due to the higher pump efficiency at flows less than $50 \%$.

## Parallel Connected Pumps - Pump Sequencing

Methods:
> Flow
> Current [Amps]
> Speed
> Demand [set-point not being reached]
> Efficiency

Which is best?

It depends
on a lot of factors





## Parallel Connected Pumps - Flow Sequencing



Flow sequencing, need to start before 400 gpm


## Parallel Connected Pumps - Flow Sequencing

 [ ${ }_{[0]}$150 _ Flow sequencing,




## Parallel Connected Pumps - Speed Sequencing



Speed Sequencing, need to start before $91 \%$ speed.
Cavitation can happen if $2^{\text {nd }}$ pump is not started.




## Parallel Connected Pumps - Demand Sequencing





## Parallel Connected Pumps - Efficiency Sequencing



## Parallel Connected Pumps - Efficiency Sequencing



## Parallel Connected Pumps - Efficiency Sequencing



## Parallel Connected Pumps - Efficiency Sequencing



## Parallel Connected Pumps - Efficiency Sequencing

If flow and head are continuously measured and/or calculated, pump efficiency is known during operation.

The third pump started at approximately 700 gpm even though two pumps could do the job up to 840 gpm .


## One pump - 400 gpm at 62 feet



## One pump - 200 gpm at 62 feet



## What if the required head changes?

Does that effect pump sequencing?

## Parallel Connected Pumps - Flow Sequencing



## Parallel Connected Pumps - Pump Sequencing

Most efficient: Stage on efficiency
$>$ Total Efficiency (Electrical + Hydraulic)
> Hydraulic Efficiency

## Parallel Connected Pumps - Pump Sequencing

Most efficient: Stage on efficiency
> Total Efficiency (Electrical + Hydraulic)
> Hydraulic Efficiency

Exception
> Limited suction head, must start additional pumps before flow gets too high

Examples: Boiler Feed, Cooling Tower, water supply from break tank

## Grundfos Technical Institute

## Thank you for your attention!

www.grundfos.us/training

## NOTE:

The following slides are not part of main slide deck but are left here just in case they can be used to help the Q\&A session. If the presentation is made available to the viewers, these slide are to be LEFT OUT.

## Misconception

Since variable head losses are such a small percentage of the total head in high rise building applications, variable frequency drives result in little or no energy savings.


Typical VFD Efficiency Curve


Source: Hydraulic Institute/Europump Guide to Life Cycle Costs

## Typical Single Stage Pump Curve



## Typical End Suction Pump Curve



## Remember the Basics.

Water horsepower (a.k.a. hydraulic horsepower)

$$
P_{3}=w h p=\frac{Q \times H \times S G}{3960}
$$

$Q=$ Flow in gpm
$H=$ Head in feet
$S G=$ Specific Gravity of liquid
$\eta=$ Pump Efficiency (Greek symbol "eta" )

Electric horsepower (Input Power)

$$
\begin{aligned}
P_{1}=e h p & =\frac{b h p}{\eta_{\text {driver }}} \\
& \quad \eta_{\text {driver }}=\text { driver efficiency }
\end{aligned}
$$

$$
P_{l}[k W]=e h p=\frac{\text { bhp } \times 0.746}{\eta_{\text {motor }} \times \eta_{\text {drive }}}
$$

